

LRTP Scenario Planning

BRTB Technical Committee

February 4, 2025

Presentation Outline

- Introduction to Project and Key Concepts
 - Project Purpose, Process, Desired Outcomes & Schedule
 - Strategic Modeling Overview
 - Case Study Literature Review & Interviews

Scenario Development

- Public Input on Policy Priorities and Desired Outcomes
- Categories and Combinations of Inputs and Outputs
 - Policy Actions ("Levers") Inputs
 - External Forces Inputs
 - Performance Outputs
- Example Visualization

Purpose, Process, Desired Outcomes

Purpose:

• Build BRTB's capacity for exploring and selecting policy actions to address transportation issues that are 1) pressing and 2) difficult to predict.

Process:

- Develop and evaluate alternative future scenarios using three key tools
 - VisionEval (VE) strategic planning model
 - InSITE (activity-based travel forecasting model)
 - GIS-based spatial analyses
- Communicate results and seek input to shape and refine scenarios
 - Public Survey
 - Stakeholder Workshops
- Discern implications, risks, and opportunities
 - Transportation investments
 - Policy priorities

Desired Outcomes:

• Identify potential refinements to 2027 LRTP goals, investment policies, and project prioritization and scoring criteria.

Project Schedule

	Oct	Nov – Dec – Ja	an - Feb	Ма	ır - Apr	May-Jun
work p Conduc check-i	ct bi-weekly in meetings m / adjust	 Design and i public survey Finalize scen drivers and performance 	nario	 Explore tra and affirm with stakel Refine sce based on v insights 	priorities holders narios	 Recommend refinements to LRTP policies an project scoring processes
Tas Man		Task 3: Elicit		Task 5: Facilitate	e 📕	Task 7: Present
Pro	ject Ta	Public Input Search Best actices	Task 4: Re Initial Scenario			iled

BMC

Strategic, Tactical, and Operational Models

Source: Oregon DOT, adapted by RSG

Strategic Modeling For Transportation Decision-Making

Strategic Model "Building Blocks"

Strategic Model "Building Blocks"

Strategic Model "Building Blocks"

BMC

Outcomes

are generated by

Actions (Policy Levers) combined with

Uncertainties (External Forces)

9

VE Case Study Research

- Anchorage, AK Metropolitan
 Area Transportation Study
 (AMATS)
- Atlanta Regional Commission (ARC)
- Boston Region MPO/ Metropolitan Area Planning Council (MAPC)
- Chittenden County (Burlington) VT MPO (CCRPC)
- Durham Carrboro Chapel Hill (DCHC) MPO
- Delaware Valley (Philadelphia) Regional Planning Commission (DVRPC)
- Houston-Galveston Area Council (H-GAC)
- Minnesota DOT (MNDOT)
- Oregon DOT (ODOT)
- Virginia DOT (VDOT)

Experiences & Lessons Learned

Anchorage (AMATS): Focus on air quality. Few strategies moved the needle but process helped policymakers & public to realize and tackle hard questions. Led to new TOD corridor plan with supportive land use policies.

Atlanta (ARC): Helped to shape 2016 vision. Experimenting with using VE for TIP and mapping out strategic policy questions for LRTP update. Multidisciplinary engagement is critical. Learning curve is steep but improves over time.

Boston (MPO + CTPS): Building an "uncertainty archive" to stress-test policies. Combining overlay maps of coastal flooding.

Burlington (CCRPC): Built TDM strategy package in response to public pushback that threatened to halt I-89 roadway expansion plan. Although some strategies are infeasible, their inclusion has jumpstarted new TDM initiatives.

Durham (DCHC): Board-driven ambitious focus on VMT reduction. Had to revise highest-performing scenario to remove the (minimal) roadway expansion. Coordinating with adjacent MPOs for tri-regional scenarios.

Philadelphia (DVRPC): 2016 VE version was most effective for testing policy strategies, not as much for building complex futures focused on deep uncertainties. Shifted resources toward building an in-house exploratory model.

Houston-Galveston Area Council (H-GAC): Built and tested many scenarios internally, working on some tweaks to resolve a few odd results, hope to integrate VE into next LRTP after hiring a new planning director.

Oregon DOT: Made data-driven decisions on cost-feasible strategies to achieve GHG & mobility goals. Simple bar graphs (what we need, where we want to be, and how much it will cost) help to check progress and change tactics.

MnDOT: Using VE internally to help respond to state mandate for regional emissions targets. Multidisciplinary engagement and leadership buy-in are critical.

VDOT: Experimented with GHG reduction strategies for DC suburbs. Planning to engage 7 MPOs in a variety of applications.

Baltimore Region Public Input

Survey Design

- Internal and external drivers of change: Which ones are most important/relevant to your community?
- Metrics for success grouped under five goals: Which of these do you care most about?

Responses

- Administered from November 19 to December 15, 2024, on the PublicInput platform.
- Total of 659 responses. However, respondents were not representative of the BMC region.
 - The typical respondent was male (58%), white (77%), with a graduate/professional degree (50%).
 - 7% of respondents identified as Black/African American.
 - 85% of respondents had a bachelor's degree or higher.
 - Among residents in BMC region, 52% are female, 55% are white, 29% are Black, and 43% have a bachelor's degree or higher.

Internal Drivers of Change (Policy Levers)

- Transportation
 Improvements
- Ways to Pay for Transportation Infrastructure
- Housing and Land Use

External Drivers of Change

- New and Emerging Transportation Trends
- Population and Economic Growth
- Climate and the Environment

Goal-based Outcome Metrics

- Accessibility
- Safety
- Mobility
- Economic Prosperity
- Environmental Responsibility

Public Ranking – Internal Drivers of Change (Policy Levers)

Public Ranking – External Drivers of Change

»RRTR

14

Public Ranking – Outcome Metrics

BRTB 15

10

Scenario Inputs: Drivers and Elements*

All Drivers: Element Level 1*

Between 2010 and 2050:

BMC

- Transit revenue miles increase 15%, primarily due to a 50% increase in transit frequency (i.e., reduced headways on key routes)
- Bike and walk trips increase 8.5%
- 24% of freeway DVMT is on corridors with TSMO controls such as ramp metering, incident management, signal coordination.
- There are 4.8% more roadway lane miles
- There are 280,000 more housing units
- Average gas tax increases 21%
- There are 17% more jobs, and per capita income has increased 43%
- About 4.5% of employees work from home (typical pre-2020 level)

* This is DRAFT data. Numbers are being finalized.

Driver A: Transportation Investments*

Driver B: Housing & Demographics*

Driver C: Fees and Incentives*

Driver D: Economy*

Elements

* This is DRAFT data. Numbers are being finalized.

BRTB

Driver E: Technology*

Driver F: Resilience & Environment*

Scenario Outputs: Performance Measures*

Improve Accessibility How easily can people reach destinations or activities using a variety of transportation options?	Improve Mobility How do people travel and how efficient and reliable is their travel?	Improve Safety Reduce the number of crashes, injuries and fatalities for all transportation system users	Implement Environmentally Responsible Transportation Solutions Pass on to future generations the healthiest natural and human environment possible. Improve resilience to climate change risks.	Promote Economic Prosperity and Opportunity Support the vitality of communities and business, opportunities for workers, and the movement of goods and services				
All scenarios account for a variety of scales (regional, local) and demographic groups.								
Access to jobs by car, transit, bike, and walk (e.g., # of jobs accessible within 20- minute trip)	Vehicle Miles Traveled (VMT)	Crash Rates	GHG Emissions per capita and by vehicle type	Transportation revenues				
Access to shopping, medical care, education, etc. (TBD with InSITE model)	Number and Percentage of Bike, Walk, Transit, and HOV Trips	Vehicle Passenger Injuries and Fatalities	Fuel consumption per capita	Transportation costs per household and per vehicle				
	Hours of Delay	Non-Motorist Injuries and Fatalities	Fuel efficiency of vehicle fleet	Transportation + housing costs per household				
	Travel Time Reliability		Impacts of sea level rise & flooding inundation on network connectivity & accessibility					

* This is DRAFT data. Numbers are being finalized.

BMC

Example Visualization: Chittenden County, Vermont I-89 Study

Building Scenarios by "Goal-Seeking"

Look for the best combination of policy elements ...

Scenario Input Levels | Clear All Selections

Model Outputs: 432 scenarios selected out of 432 scenarios | Clear All Selections

...by selecting a desired set of results

Bike Trips Per Capita

Walk Trips Per Capita Average = 330m trips per capita

0.330

Low Income Household Vehicle Cost as Percentage of Income®

Best Policies to Reduce Household DVMT

- Higher population growth in more dense, mixed-use communities (Land Use L2)
- Greater access to bike and transit (Bike & Transit L3)
- VMT tax particularly impactful (Pricing L4)
- Current MTP carsharing & EV policies (Vehicles L1)
- Demand management and income polices less sensitive

Scenario Input Levels | Clear All Selections

Model Outputs: 187 scenarios selected out of 432 scenarios | Clear All Selections

Total DVMT® Average = 6.7M million daily miles

Best Policies to Reduce Overall DVMT

- Current MTP population growth (Land Use L1) plus compact community design (Land Use L2)
- Otherwise, the same combination as Best Policies to Reduce Household DVMT

Scenario Input Levels | Clear All Selections

Model Outputs: 160 scenarios selected out of 432 scenarios | Clear All Selections

Best Policies to Reduce GHG

Essentially the same • combination as Best Policies to Reduce **Overall DVMT**

Scenario Input Levels | Clear All Selections

Model Outputs: 198 scenarios selected out of 432 scenarios | Clear All Selections

Average = 45M million gallons Scenarios 44,000,000 46,000,000 48,000,000

25 -

20

15 10

Average = 15k trips

Total DVMT

Average = 6.7M million daily miles

Low Income Household DVMT

Best Combination of Policies

Based on evaluation of all Driver + Element Level combinations

WBRTB

I-89 TDM Recommendations

- Increase teleworking by 50%
- Metropolitan Transportation Plan land use density (90% of Households in existing developed areas)
- Double trips made by bike
- Triple transit services and improve frequencies
- Double participation in TDM programs and increase cost of parking
- Mileage-based fee (5 cents/mile)

Total VMT reduction between 10% and 20%

BRTB Scenario Planning: Next Steps

S BMC

